Page 16 - An ultrasound-driven immune-boosting molecular machine for systemic tumor suppression
P. 16

SCIENCE ADVANCES   |  RESEARCH ARTICLE


         39.  B. A. Pulaski, S. Ostrand-Rosenberg, Mouse 4T1 breast tumor model. Curr. Protoc.    58.  N. Sugita, K.-i. Kawabata, K. Sasaki, I. Sakata, S.-i. Umemura, Synthesis of amphiphilic
           Immunol. Chapter 20, Unit 20.2 (2001).                derivatives of rose bengal and their tumor accumulation. Bioconjug. Chem. 18, 866–873
         40.  M. Lelekakis, J. M. Moseley, T. J. Martin, D. Hards, E. Williams, P. Ho, D. Lowen, J. Javni,   (2007).
           F. R. Miller, J. Slavin, R. L. Anderson, A novel orthotopic model of breast cancer metastasis    59.  M. Li, S. Long, Y. Kang, L. Guo, J. Wang, J. Fan, J. Du, X. Peng, De novo design
           to bone. Clin. Exp. Metastasis 17, 163–170 (1999).    of phototheranostic sensitizers based on structure-inherent targeting for enhanced
         41.  A. W. Sauter, D. Spira, M. Schulze, C. Pfannenberg, J. Hetzel, M. Reimold, E. Klotz,   cancer ablation. J. Am. Chem. Soc. 140, 15820–15826 (2018).
           C. D. Claussen, M. S. Horger, Correlation between [18F]FDG PET/CT and volume perfusion    60.  M.-Y. Pyo, B.-k. Park, J. J. Choi, M. Yang, H. O. Yang, J. W. Cha, J.-C. Kim, I. S. Kim, H. B. Lee,
           CT in primary tumours and mediastinal lymph nodes of non-small-cell lung cancer. Eur.   M. Jin, Pheophytin a and chlorophyll a identified from environmentally friendly
           J. Nucl. Med. Mol. Imaging 40, 677–684 (2013).        cultivation of green pepper enhance interleukin-2 and interferon- in Peyer's patches
         42.  T. Otani, K. Kondo, H. Takizawa, K. Kajiura, H. Fujino, H. Otsuka, H. Miyoshi, Non-invasive   ex vivo. Biol. Pharm. Bull. 36, 1747–1753 (2013).
           monitoring of cisplatin and erlotinib efficacy against lung cancer in orthotopic SCID    61.  G. R. Harris, P. A. Lewin, in Ultrasonic Exposimetry (John Wiley & Sons Inc., 1999),
           mouse models by small animal FDG-PET/CT and CT. Oncol. Rep. 41, 447–454 (2019).  pp. 2464–2465.
         43.  C. S. Umeshappa, Y. Xie, S. Xu, R. H. Nanjundappa, A. Freywald, Y. Deng, H. Ma, J. Xiang,    62.  B. M. Cellamare, P. Fini, A. Agostiano, S. Sortino, P. Cosma, Identification of Ros produced
           Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2   by photodynamic activity of chlorophyll/cyclodextrin inclusion complexes. Photochem.
           and CD40L signaling and by modulating apoptosis-controlling pathways. PLOS ONE 8,   Photobiol. 89, 432–441 (2013).
           e64787 (2013).                                      63.  Y. I. Son, S. I. Egawa, T. Tatsumi, R. E. Redlinger Jr., P. Kalinski, T. Kanto, A novel
         44.  B. Dillinger, S. Ahmadi-Erber, M. Lau, M. A. Hoelzl, F. Erhart, B. Juergens, D. Fuchs,   bulk-culture method for generating mature dendritic cells from mouse bone marrow
           A. Heitger, S. Ladisch, A. M. Dohnal, IFN- and tumor gangliosides: Implications   cells. J. Immunol. Methods 262, 145–157 (2002).
           for the tumor microenvironment. Cell. Immunol. 325, 33–40 (2018).   64.  C. S. Umeshappa, R. H. Nanjundappa, Y. Xie, A. Freywald, Q. Xu, J. Xiang, Differential
                                                                            +
         45.  R. Thibaut, P. Bost, I. Milo, M. Cazaux, F. Lemaître, Z. Garcia, I. Amit, B. Breart,   requirements of CD4  T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming
                                                                                               +
           C. Cornuot, B. Schwikowski, P. Bousso, Bystander IFN- activity promotes widespread   and functional memory CTL development at higher CD8  T-cell precursor frequency.
           and sustained cytokine signaling altering the tumor microenvironment. Nat. Cancer 1,   Immunology 138, 298–306 (2013).
           302–314 (2020).                                     65.  K. C. Soares, K. Foley, K. Olino, A. Leubner, S. C. Mayo, A. Jain, E. Jaffee, R. D. Schulick,
         46.  A. R. Sánchez-Paulete, A. Teijeira, F. J. Cueto, S. Garasa, J. L. Pérez-Gracia, A. Sánchez-  K. Yoshimura, B. Edil, L. Zheng, A preclinical murine model of hepatic metastases. J. Vis.
           Arráez, D. Sancho, I. Melero, Antigen cross-presentation and T-cell cross-priming   Exp. 51677 (2014).
           in cancer immunology and immunotherapy. Ann. Oncol. 28, xii44–xii55 (2017).   66.  S. Garaud, C. Gu-Trantien, J.-N. Lodewyckx, A. Boisson, P. De Silva, L. Buisseret, E. Migliori,
         47.  B. Platzer, K. G. Elpek, V. Cremasco, K. Baker, M. M. Stout, C. Schultz, E. Dehlink,   M. Libin, C. Naveaux, H. Duvillier, K. Willard-Gallo, A simple and rapid protocol
           K. C. Shade, R. M. Anthony, R. S. Blumberg, S. J. Turley, E. Fiebiger, IgE/FcRI-mediated   to non-enzymatically dissociate fresh human tissues for the analysis of infiltrating
           antigen cross-presentation by dendritic cells enhances anti-tumor immune responses.   lymphocytes. J. Vis. Exp. 52392 (2014).
           Cell Rep. 10, 1487–1495 (2015).                      67.  S. Govindarajan, D. Elewaut, M. Drennan, An optimized method for isolating and expanding
         48.  A. Jain, J. E. Slansky, L. C. Matey, H. E. Allen, D. M. Pardoll, R. D. Schulick, Synergistic effect   invariant natural killer T cells from mouse spleen. J. Vis. Exp. e53256 (2015).
           of a granulocyte-macrophage colony-stimulating factor-transduced tumor vaccine
           and systemic interleukin-2 in the treatment of murine colorectal cancer hepatic
                                                              Acknowledgments: We thank H. Gao (West China School of Pharmacy, Sichuan University,
           metastases. Ann. Surg. Oncol. 10, 810–820 (2003).
                                                              China) for providing us with B16-OVA cells and the splenocytes of OT-1 mice and C. Wang
         49.  E. Vivier, S. Ugolini, D. Blaise, C. Chabannon, L. Brossay, Targeting natural killer cells
                                                              (First Affiliated Hospital of Dalian Medical University, China) for doing tissue sections and other
           and natural killer T cells in cancer. Nat. Rev. Immunol. 12, 239–252 (2012).
                                                              biological analysis. Funding: This work was funded by the National Key Technology R&D
         50.  D. Cibrian, F. Sanchez-Madrid, CD69: From activation marker to metabolic gatekeeper.
                                                              Program of China (ZX20150584 to W.Z.), the National Basic Research Program of China (973
           Eur. J. Immunol. 47, 946–953 (2017).
                                                              Program) (082105 to W.Z.), and the National Natural Science Foundation of China (21606036
         51.  L. Notario, J. Redondo-Anton, E. Alari-Pahissa, A. Albentosa, M. Leiva, D. Lopez, G. Sabio,
                                                              to G.L. and 82001958 to K.S.). Author contributions: Conceptualization: L.W., W.Z., K.S., and
           P. Lauzurica, CD69 targeting enhances anti-vaccinia virus immunity. J. Virol. 93,                      Downloaded from https://www.science.org at Dalian University of Technology on October 20, 2021
                                                              J.S. Methodology: L.W., W.Z., G.L., K.S., and J.S. Investigation: L.W., K.S., L.C., Y.D., Y.W., S.W., Y.L.,
           e00553-19 (2019).
                                                              X.G., Y.Z., F.S., X.D., Q.L., and X.P. Writing (original draft): L.W. and K.S. Writing (review and
         52.  C. S. Umeshappa, J. Xiang, Regulators of T-cell memory generation: TCR signals versus   editing): L.W., K.S., G.L., and W.Z. Funding acquisition: W.Z., J.S., K.S., and G.L. Supervision: K.S.,
             +
           CD4  help? Immunol. Cell Biol. 89, 578–580 (2011).
                                                              G.L., and W.Z. Competing interests: The authors declare that they have no competing
         53.  S. Shi, W. T. Yao, J. Xu, J. Long, C. Liu, X. J. Yu, Combinational therapy: New hope
                                                              interests. Data and materials availability: All data needed to evaluate the conclusions in the
           for pancreatic cancer? Cancer Lett. 317, 127–135 (2012).
                                                              paper are present in the paper and/or the Supplementary Materials.
         54.  D. S. H. Bell, Combine and conquer: Advantages and disadvantages of fixed-dose
           combination therapy. Diabetes Obes. Metab. 15, 291–300 (2013).  Submitted 15 May 2021
         55.  X. Pang, C. Xu, Y. Jiang, Q. Xiao, A. W. Leung, Natural products in the discovery of novel   Accepted 30 August 2021
           sonosensitizers. Pharmacol. Ther. 162, 144–151 (2016).  Published 20 October 2021
         56.  M. Mori, T. Kuroda, A. Obana, I. Sakata, T. Hirano, S. Nakajima, M. Hikida, T. Kumagai, In   10.1126/sciadv.abj4796
           vitro plasma protein binding and cellular uptake of ATX-S10(Na), a hydrophilic chlorin
           photosensitizer. Jpn. J. Cancer Res. 91, 845–852 (2000).  Citation: L. Wang, G. Li, L. Cao, Y. Dong, Y. Wang, S. Wang, Y. Li, X. Guo, Y. Zhang, F. Sun, X. Du,
         57.  T. J. Dougherty, Photosensitizers: Therapy and detection of malignant tumors.   J. Su, Q. Li, X. Peng, K. Shao, W. Zhao, An ultrasound-driven immune-boosting molecular machine
           Photochem. Photobiol. 45, 879–889 (1987).          for systemic tumor suppression. Sci. Adv. 7, eabj4796 (2021).










        Wang et al., Sci. Adv. 2021; 7 : eabj4796     20 October 2021                                      15 of 15
   11   12   13   14   15   16